Support Vector Machine Analysis for Potential Hotspot Over Papua Island

نویسندگان

چکیده

Pulau Papua merupakan wilayah yang sering mengalami kebakaran hutan atau lahan dan tercatat luas dari tahun 2013 hingga 2018 mencapai 2.092,44 Ha, sedangkan penelitian masih sangat terbatas mengindikasikan kawasan mendesak untuk dipantau secara intensif melindungi tersisa di Papua. Salah satu indikator terjadinya dapat diketahui dengan munculnya titik api atas daratan. Sebagai upaya penanggulangan lahan, ini memanfaatkan data (lintang, bujur, suhu kecerahan, daya pancar api, kepercayaan) mengetahui daerah memiliki mengklasifikasikan menjadi tiga potensi (risiko rendah, risiko sedang, tinggi). Penelitian berhasil mengimplementasikan metode Support Vector Machine (SVM) hotspot. Hasil menunjukkan bahwa SVM digunakan dalam proses klasifikasi selama (2019, 2020, 2021) hasil didapat adalah kebakaran. Terdapat 2.214 hotspot termasuk kategori rendah; 15.412 sedang; 4.479 tinggi. Selain itu, juga menemukan jumlah kejadian tertinggi terjadi pada bulan Agustus terendah Januari setiap analisis. memetakan posisi spasial berdasarkan tingkat pulau paling banyak bagian Selatan (Kota Merauke, Kota Tolikara, Puncak Jaya). Terakhir, menghasilkan nilai kebenaran 91,475% teknik pengujian Polynomial Kernel 93,667% Confusion Matrix sebagai validasi. Abstract Island is an area that often experiences forest or land fires and noted to have extensive from reaching 2,092.44 while there still very limited research indicating the urgent be monitored intensively protect left in this area. One indicator of occurrence can known by appearance hotspots over As effort overcome fires, study utilizes (latitude, longitude, brightness temperature, fire radiative power, confidence) find out has a classifying into three potential (low risk, medium high risk). This succeeded implement method for data. The results indicate used process on years with obtained are being fires. There 2,214 included category low risk; 15,412 4,479 high-risk potential. Furthermore, also found highest number occurrences was month October lowest January each year analysis. mapped spatial position based rate risk island showed most South part (Merauke City, Tolikara Jaya City). Finally, produces 91.475% truth values testing technique 93.667% as validation process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification areas with inundation potential for urban runoff harvesting using the support vector machine model

     Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

متن کامل

An economic analysis for integrated bi-objective biofuel supply chain design using support vector machine

Using second-generation biomass and biofuel deal with environmental pollution and CO2 emissions. Therefore, this paper design an integrated multi-period bi-objective biofuel supply chain network using support vector machine (SVM) and economic analysis to reduce the cost of generating biofuels and CO2 emissions. The economic analysis consists of three scenarios for supplyin...

متن کامل

An Intelligence-Based Model for Supplier Selection Integrating Data Envelopment Analysis and Support Vector Machine

The importance of supplier selection is nowadays highlighted more than ever as companies have realized that efficient supplier selection can significantly improve the performance of their supply chain. In this paper, an integrated model that applies Data Envelopment Analysis (DEA) and Support Vector Machine (SVM) is developed to select efficient suppliers based on their predicted efficiency sco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Teknologi Lingkungan

سال: 2023

ISSN: ['1411-318X', '2548-6101']

DOI: https://doi.org/10.55981/jtl.2023.238